- H. Lux, Z. Elektrochem. Angew. Phys. Chem., 45, 303 (1939).
 H. Flood and T. Førland, Acta Chem. Scand., 1, 592 (1947).
 J. A. Duffy and M. D. Ingram, J. Non-Cryst. Solids, 21, 373 (1976).
 T. Yokokawa, S. Tamura, S. Sato, and K. Niwa, Phys. Chem. Glasses,
- 15, 113 (1974).

- M. Itoh, S. Sato, and T. Yokokawa, J. Chem. Thermodyn., 8, 339 (1976). (6) S. Kohsaka, S. Sato, and T. Yokokawa, J. Chem. Thermodyn., 10, 117 (1978).
- S. Kohsaka, S. Sato, and T. Yokokawa, J. Chem. Thermodyn., in press. (7)(8) K. Gunzi, S. Kohsaka, and T. Yokokawa, J. Chem. Thermodyn., in press.

Received for reviewed July 18, 1978. Accepted March 19, 1979.

Cryoscopic Constant, Molar Volumes, Compressibility, and Viscosity in the Systems $CH_3(CH_2)_7COOH-CH_3(CH_2)_7COOM$ (M = Na, K, Rb, Cs) at 30 °C

Giovanni Vitali, Maria A. Berchiesi, and Gianfrancesco Berchiesi*

Istituto Chimico dell'Università, 62032 Camerino, Italy

The cryoscopic constant of nonanoic acid is measured and the enthalpy of fusion deduced is compared with the value extrapolated from previous measurements on higher homologues. Density, compressibility, and viscosity of solutions of alkali metal nonanoates in nonanoic acid are reported.

Introduction

As a part of our research on fused aliphatic acids, we report the experimental values of some measurements carried out on mixtures of nonanoic acid (pelargonic acid) and alkali metal nonanoates.

Experimental Section

Pycnometric, viscosimetric, ultrasonic, and cryoscopic experimental methods are described in previous papers (3-6). In the pycnometric measurements care was taken to minimize the error due to the adhesion of solutions on the capillaries; e.g., the capillaries were cleaned with a very thin tube of plastic and with cleaning paper rolled around a very thin metallic wire. Notwithstanding, the density and φ_{v} values are obtained at a reliability of 0.7 \times 10⁻⁴ g/mL and 1 mL/mol, respectively. The compressibility data, obtained via ultrasonic velocity ($\beta_s = 1/u^2 d$) (9), and viscosimetric data are given with a reliability of 0.1 \times 10⁻⁶ bar⁻¹ and 0.1 cP, respectively. The cryoscopic measurements were performed as previously described (4), but in this procedure the furnace was substituted by a glass double vessel with circulation of methyl alcohol thermostated in a Lauda ultracryostat. Fluka Puriss nonanoic acid was used without further purification; the melting temperature and some physical properties measured at 30 °C are given in Table I. The alkali metal nonanoates were prepared by complete reaction between stoichiometric amounts of the corresponding carbonates and of a warm alcoholic solution of nonanoic acid. The soap precipitated at room temperature was recrystallized twice from ethyl alcohol and dried under dynamic vacuum at increasing temperature (90 °C maximum). C. Erba RP carbonates were used. Owing to the high cost of Cs₂CO₃, the cesium soap prepared was sufficient only for three measurements. The lithium nonanoate is practically insoluble in nonanoic acid and the corresponding system was not studied.

Table I. Some Physical Properties of Nonanoic Acid

$d^{\circ}, g/mL$	0.8968	
η°, cP	6.0	
β_{s}° , bar ⁻¹	65.7×10^{-6}	
Tenna K	285.0	

Table II. Experimental Values of Density, Compressibility, and Viscosity for the Solutions of Alkali Metal Nonanoates in Nonanoic Acid

nonanoate					
salt	<i>C</i> , mol/L	<i>d</i> , g/mL	$10^6 \beta_{\rm s}$, bar ⁻¹	η , cP	
Na	0.0400	0.8979,	65.7	6.3	
	0.0612	0.8986	65.6	6.5	
	0.1166	0.9001	65.4	7.1	
	0.1767	0.9018	65.0	7.5	
	0.2277	0.9033	65.2	7.9	
К	0.0410	0.8986	65.4	6.4	
	0.0869	0.9005	65.2	6.9	
	0.1229	0.9021	64.9	7.4	
	0.1374	0.9027	65.0	7.5	
	0.1749	0.9043	64.9	8.1	
	0.2298	0.9066	64.6	8.8	
Rb	0.0761	0.9031	65.3	6.8	
	0.1093	0.9057	65.0	7.2	
	0.1474	0.9088,	64.9	7.7	
	0.2156	0.9143	64.4	8.6	
Cs	0.0992	0.9093	65.0	7.2	
	0.1225	0.9122	65.0	7.5	
	0.1768	0.9190.	64.6	8.3	

Results

Cryoscopy. On the basis of previous experiences (6), diphenyl is a good cryoscopic solute in aliphatic acids because the corresponding crystallization curves approach the ideal one and formation of mixed crystals is not evident. For this reason diphenyl has been employed in order to determine the cryoscopic constant $(\Delta T/m)^{\circ}$. The $(\Delta T/m)^{\circ}$ value is, on the contrary, very low when K or Na soaps are employed as solutes: diphenyl 8.0 K m^{-1} ; potassium nonanoate 4.6 K m^{-1} ; sodium nonanoate 5.1 K m^{-1} . A value of 8.0 is assumed for the cryoscopic constant and the enthalpy of fusion is calculated following the formula

$$H_{\rm f} = (RT_0^2 M / 1000 k)$$

where k is the cryoscopic constant. The values $H_{\rm f} = 3.19$ kcal/mol, and $S_f = 11.2$ eu are obtained with a precision of $\pm 2\%$. These values agree satisfactorily with the equation

Table III.	Parameters of	Equations	1, 2,	and	3	and
Standard I	Deviations					

		nor	nanoate	
	Na	K	Rb	Cs
$\varphi_{\rm y}^{0}$, mL/mol	168	170	180	(182)
$S_{\rm v}$, $(10^{3/2} {\rm mL}^{3/2} {\rm mol}^{-3/2})$	2.53	3.76	0.94	(3.46)
σ	0.2	0.4	0.6	(0.2)
10 ⁶ γ, bar ⁻¹	65.8	65.5	65.8	(65.6)
10 ⁶ δ, (bar M) ⁻¹	3.24	3.75	6.45	(5.55)
σ	0.1	0.08	0.08	(0.07)
λ, cP M ⁻¹	8.61	11.80	11.83	(12.84)
σ	0.06	0.10	0.09	(0.07)

previously proposed for the higher homologues (2), $S_{f}(\text{odd}) =$ 2.56*n* – 9.64; from this equation in fact a value of $S_f = 13.4$ eu may be calculated.

Density, Compressibility, and Viscosity. The density values and the apparent molar volumes derived from the equation φ_{μ} = $10^{3}(d^{\circ} - d)/mdd^{\circ} + M_{2}/d(9)$, the compressibility, and the viscosity data are given in Table II, whereas in Table III are given the parameters of the following equations

$$\varphi_{\rm v} = \varphi_{\rm v}^{\,\rm o} + S_{\rm v} \sqrt{C} \tag{1}$$

$$\beta_{\rm s} = \gamma - \delta C \tag{2}$$

 $n = n^{\circ} + \lambda C$ (3)

that fit the experimental data; η° is given in Table I. Parameter A of the Jones–Dole equation (8), $\eta/\eta^\circ = 1 + AC^{1/2} + BC$, is $\simeq 0$ in the limits of experimental error. From Table III it is evident that the dependence of η/C or β_s/C is more important in solutions with higher cation soaps, generally. Under the assumption that the salts are completely dissociated, the Glueckauf method (7), slightly modified as previously reported (1), may be employed in order to obtain φ_v^+ and φ_v^- . The φ_v^0 values concerning Na, K, and Rb soaps (more reliable owing to the high number of experimental measurements) expressed in the form

$$\varphi_{v}^{0} = (4/3)\pi r^{3}N + Kr^{2} - A'z^{2}/r + \varphi_{v}^{-}$$
(4)

give the following values: $A' = 40 (\pm 5) (mL/mol) Å; K = 11$

(±2) mL/(mol Å²); $\varphi_v^- = 174$ (±2) mL/mol. The low values of φ_v^+ obtained from the additivity rule (-6, Na⁺; -4, K⁺; 6, Rb⁺; 8, Cs⁺) may be ascribed to the high value of the electrostriction constant. It is noteworthy that $\varphi_v^- \simeq V_{\text{nonanoic acid}}$

Glossary

φ_{v}	apparent molar volume of the solute, the symbols 0,
	+, - have the following meaning, respectively: at
	infinite dilution, of the cation, of the anion, mL/mol
β_s	adiabatic compressibility, β° is of the pure solvent,
	bar ⁻¹
u	ultrasonic velocity
d	density, d° is density of pure solvent, g/mL
η	viscosity, cP
m	molality
С	molarity
М	molecular weight of the solvent
M ₂	molecular weight of the solute
Ν	Avogadro's number
n	number of carbon atoms in the molecule
k	cryoscopic constant
ΔT	cryoscopic lowering
Hf	fusion enthalpy
St	fusion entropy
T_0, T_{fus}	fusion temperature of nonanoic acid
Sv	slope of the Masson equation
σ	standard deviation
Literature	Cited

- (1) Berchlesi, G., Berchlesi, M. A., Vitali, G., Gazz. Chim. Ital., 108, 479 (1978).
- (2) Berchiesi, G., Leonesi, D., Cingolani, A., J. Therm. Anal., 7, 659 (1975).
- (3) Berchiesi, G., Leonesi, D., Cingolani, A., J. Therm. Anal., 9, 171 (1976).
 (4) Berchiesi, G., Vitali, G., Berchiesi, M. A., J. Therm. Anal., 13, 105 (1978).
- (5) Berchiesi, M. A., Berchiesi, G., Gioia-Lobbia, G., J. Chem. Eng. Data,
- 19, 326 (1974).

- (6) Braghetti, M., Leonesi, D., Franzosini, P., *Ric. Sic.*, **38**, 116 (1968).
 (7) Glueckauf, E., *Trans. Faraday Soc.*, **61**, 914 (1965).
 (8) Jones, G., Dole, M., *J. Am. Chem. Soc.*, **51**, 2050 (1929).
 (9) Harned-Owen, "The Physical Chemistry of Electrolytic Solution", Reinhold, New York, 1969, p. 256 (1997). New York, 1958, p 358 f.

Received for review September 11, 1978. Accepted January 23, 1979. Thanks are due to CNR (Rome) for financial support.

Low-Temperature Heat Capacities of Potassium Disilicate

Richard P. Beyer* and George E. Daut

Thermodynamics Laboratory, Albany Metallurgy Research Center, U.S. Department of the Interior, Bureau of Mines, Albany, Oregon 97321

Low-temperature heat capacities of crystalline potassium disilicate, $K_2Si_2O_5(c)$, were measured over the range 5–308 K by adiabatic calorimetry. The entropy, S° at 298.15 K, was calculated to be 45.55 \pm 0.05 cal K⁻¹ mol⁻¹. The heat capacity, C_p° , entropy, S° , and Gibbs energy function, $(G^{\circ} - H_0^{\circ})/T$, are tabulated over the temperature range investigated. The heat capacity curve showed a normal sigmoid shape.

One of the Bureau of Mines overall goals is to maintain an adequate supply of minerals to meet national economic and strategic needs. Part of this effort involves supplying ther-

modynamic data on compounds of mineral and metallurgical interest, such as potassium disilicate. The heat capacities of potassium disilicate, $K_2Si_2O_5(c)$, were measured over the range of 5-308 K by adiabatic calorimetry. Related thermodynamic functions are tabulated over the range 5-300 K.

Materials and Apparatus

Crystalline potassium disilicate was prepared by reacting a mixture of reagent-grade potassium carbonate, K₂CO₃, and silicic acid, $SiO_2 \cdot xH_2O$, in stoichiometric quantities of K_2O and SiO_2 . The reaction was initiated by heating the mixture in a platinum dish at 813 K for several hours, followed by a 5-day heating